Structure Reports

Online
ISSN 1600-5368

D. Gayathri, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\text {a }}{ }^{\text {* }}$

K. Ravikumar, ${ }^{\text {b }}$
M. Poornachandran ${ }^{c}$ and
R. Raghunathan ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{c}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.116$
Data-to-parameter ratio $=19.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(Tosylamino)butan-1-ol

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$, the crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and intermolecular $\pi-\pi$ interactions.

Comment

Sulfone, sulfate, thiol, sulfonamide and sulfoxide compounds exhibit insecticidal, antimicrobial and germicidal activitites (Krishnaiah et al., 1995; De Benedetti et al., 1985; Dupont et al., 1978). Sulfur-containing compounds mostly act as simple narcotics (Schultz et al., 2001). The conformation about the S atom determines the pharmacological activity of the compound (McKenna et al., 1989). In view of the importance of this type of compound, we have undertaken the structure determination of the title compound (I), a sulfonamide derivative (Fig. 1 and Table 1).

(I)

The bond lengths and bond angles are comparable with literature values (Allen et al., 1987). Atom C1 deviates by 0.047 (3) \AA from the plane of the benzene ring ($\mathrm{C} 2-\mathrm{C} 7$).

The crystal packing is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and intermolecular $\pi-\pi$ interactions. Atom O 3 acts as a donor to O 1 , and N 1 acts as a donor to O 3 (Table 2), generating $R_{2}^{2}(14)$ and $R_{2}^{2}(10)$ rings, respectively (Bernstein et al., 1995). Atom O3 acts as both a donor and an acceptor, leading to a zigzag chain-like pattern of packing running along the a axis. The chains along a are further stabilized by $\pi-\pi$ interactions, $C g \cdots C g^{i}$ [symmetry code: (i) $1-x, 1-y, z ; C g$ is the centroid of the ${ }^{C} 2-C 7$ ring], with a centroid-centroid separation of 3.885 (1) \AA.

Experimental

$10 \% \mathrm{NaOH}(5 \mathrm{ml})$ was added dropwise at 273 K to a solution of $2-$ aminobutan-1-ol (1 mmol), p-toluenesulfonyl chloride (1 mmol) and a catalytic amount of tetrabutylammonium fluoride in benzene $(20 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 10 h , and the organic layer separated, concentrated and column chromatographed to obtain the title compound, which was recrystallized from hexane-ethyl acetate ($9: 1$).

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=243.32$
Triclinic, $P \overline{1}$
$a=6.4659$ (4) A
$b=7.0150$ (5) \AA
$c=14.2483(9) \AA$
$\alpha=101.720(1)^{\circ}$
$\beta=97.962(1)^{\circ}$
$\gamma=99.015(1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: none
7043 measured reflections
$V=615.22(7) \AA^{3}$
$Z=2$
$D_{x}=1.313 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.26 \times 0.25 \times 0.21 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.116$
$S=1.04$
2810 reflections
148 parameters
H-atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$	$-100.7(1)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1-\mathrm{N} 1$	$110.5(1)$
$\mathrm{C} 10-\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$	$135.0(1)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{S} 1-\mathrm{N} 1$	$-69.1(1)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 5$	$-72.1(1)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1$	0.93	2.49	$2.867(2)$	105
O3-H3A $^{\text {O }}{ }^{\mathrm{i}}$	0.82	2.02	$2.837(2)$	175
N1-H1 $\cdots \mathrm{O}^{\mathrm{ii}}$		0.86	2.12	$2.890(2)$

[^1]

Figure 2
The molecular packing of (I), viewed approximately along the b axis, showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, drawn as thick dashed lines, and $\pi-\pi$ interactions, drawn as narrow dashed lines.

All H -atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}, \mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2}, \mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{H}=$ $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$ for NH , and $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for OH .

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the University Grants Commission (UGC-SAP) and Department of Science and Technology (DST-FIST), Government of India, is acknowledged by DG and DV for providing facilities to the department.

References

Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SMART (Version 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
De Benedetti, P. G., Folli, U., Larossi, D. \& Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527-1532.
Dupont, L., Lamotte, J., Campsteyn, H. \& Vermeire, M. (1978). Acta Cryst. B34, 1304-1310.
Krishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. \& Narasinga Rao, S. (1995). Acta Cryst. C51, 2429-2430.

McKenna, R., Neidle, S., Kuroda, R. \& Fox, B. W. (1989). Acta Cryst. C45, 311314.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Schultz, T. W., Sinks, G. D. \& Miller, L. A. (2001). Environ. Toxicol. 16, 543549.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+1$.

